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Zero-Shot Few-Shot

Zero/few-shot 3D part segmentation.
Highly competitive results compared to the fully supervised methods.
Can be directly applied to real-world point clouds without significant domain gaps.
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Existing Approaches

Supervised by 3D ground truth labels.

Suffer from 3D (labeled) data scarcity.

 E.g., PartNet only covers 24 object categories.

* Poor generalization to unseen categories.
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Mo, Kaichun, et al. "Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object”.



Leverage Pretrained Image-Language Models
GLIP

* Open-vocabulary 2D detection / grounding.
* |nput: A free-form text description + a 2D image.
* Qutput: 2D bounding boxes.

» EXxcel at detecting object parts.
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Pipeline
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Pipeline

 How to convert 2D bboxes to 3D (semantic & instance) segmentation?

 How to finetune the GLIP model given few-shot 3D data?

Can we leverage multi-view priors to boost GLIP’s performance?

35

ﬁ multi-view

conS|stency

few-shot prompt tuning

‘ QL -] (i) voting ‘ semantic
| "‘r \ '/4/ 0 O
GLIP = oo
’ 0e® o
¥ ® @ g0_0 o
\ o
| t (i) super point °"e © 00
input 3D point cloud ‘rm, seat, back, leg generation (iii) grouping instance
zero shot . wh ’ o fuse 2D BBoxes to 3D seg .
Rl 2D renderings 01;3 chair detected 2D BBoxes | /  point seg

_EEIE S SR B ETEER




Detected 2D BBoxes to 3D Point Segmentation

* Challenges:

Bounding boxes are not as precise as point-wise labels.

Non-trivial to determine which sets of 2D bounding boxes indicate
the same 3D part instance.

(if) voting
* A learning-free module: -
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Detected 2D BBoxes to 3D Point Segmentation

1. 3D super point generation

* Oversegment the input 3D point cloud into a collection of super points.

2. 3D semantic voting
| | | (if) voting
* Assign a semantic label for each super point.

3. 3D instance grouping

Group super points within each part category into instances based on
their similarity of bounding box coverage.

(i) super point C
generation (iii) grouping




Zero-Shot Segmentation

 Enable zero-shot open-vocabulary 3D part segmentation.

* Limited by GLIP’s performances.
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GLIP Failure Cases

* Pretrained GLIP fail to understand some of our part definitions.

 Can we finetune GLIP model with a few 3D shapes with ground truth
segmentation?

Faucet Display Scissors Bucket Suitcase Eyeglasses Kettle Camera Pen Toaster
switch support screw handle handle leg spout lens button slider

rk v )
7
e
f
3
vk,




Few-Shot Prompt Tuning
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Few-Shot Prompt Tuning

Faucet Display Scissors Bucket Suitcase Eyeglasses Kettle Camera Pen Toaster
switch support screw handle handle leg spout lens button slider
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Multi-View Feature Aggregation

-l

'
~ TllENEEEEES
| (S Ll Ll [T

f AN EEEE~
L B | [ [ S
. JEEEEEEE-

Input Point Cloud

N
¢ EAEFET Y.

Query View View 1 View 2 |




Multi-View Feature Aggregation

* Better handle images taken from some rare viewpoints.
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Method
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PartNet-Ensembled

* 45 object categories, 103 parts.

category parts few-shot test extra-train category parts few-shot test extra-train
Bottle lid 8 49 471 || Microwave display, door, handle, button 8 8 234
Box lid 8 20 O [| Mouse button, cord, wheel 8 6 0
Bucket handle 8 28 0 (| Oven door, knob 8 22 0
Camera button, lens 8 29 O||Pen cap, button 8 40 0
Cart wheel 8 53 O ||Phone lid, button 8 10 0
Chair arm, back, leg, seat, wheel 8 73 8000 | | Pliers leg 8 17 0
Clock hand 8 23 593 | | Printer button 8 21 0
CoffeeMachine button, container, knob, lid 8 46 0 || Refrigerator door, handle 8 36 195
Dishwasher door, handle 8 40 179 || Remote button 8 41 0
Dispenser head, lid 8 49 0||Safe door, switch, button 8 22 0
Display base, screen, support 8 29 954 || Scissors blade, handle, screw 8 39 60
Door frame, door, handle 8 28 237 || Stapler body, lid 8 15 0
Eyeglasses body, leg 8 57 0 || StorageFurniture door, drawer, handle 8 338 2260
Faucet spout, switch 8 76 681 || Suitcase handle, wheel 8 16 0
FoldingChair  seat 8 18 0 || Switch switch 8 62 0
Globe sphere 8 53 O (| Table door, drawer, leg, tabletop, wheel, handle 8 93 9799
Kettle lid, handle, spout 8 21 0 | Toaster button, slider 8 17 0
Keyboard cord, key 8 29 165 || Toilet lid, seat, button 8 61 0
KitchenPot lid, handle 8 17 O (| TrashCan footpedal, 1id, door 8 62 358
Knife blade 8 36 505||USB cap, rotation 8 43 0
Lamp base, body, bulb, shade 8 37 3246 || WashingMachine door, button 8 9 0
Laptop keyboard, screen, shaft, touchpad, camera 8 47 430 || Window window 8 50 0
Lighter lid, wheel, button 8 20 0|(45 in total 103 in total 360 1,906 28,367




Quantitative Results

* |mpressive zero-shot
performances.

* Not only outperforms
existing few-shot
approaches by a large
margin, but also highly
competitive compared to
the fully supervised
counterparts.
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Instance Segmentation

#3D data Method mAP50
few-shot w/ extra PointGroup | 31.0
data (45x8 + 28k) | SoftGroup | 31.9

PointGroup | 16.0

few-shot SoftGroup 25.7

(45%8) PartSLIP | 44.8
zero-shot PartSLIP 18.0




Real-World Point Clouds

* |nput point clouds scanned by an iPhone.

Input
point cloud
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Takeaways

* A novel approach for low-shot 3D part segmentation.

* Achieves impressive zero-shot performances and highly competitive few-shot
results compared to the fully supervised counterparts.

 Can be applied to real-world point clouds without significant domain gap.



