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TL; DR

Zero/few-shot 3D part segmentation.  
Highly competitive results compared to the fully supervised methods. 

Can be directly applied to real-world point clouds without significant domain gaps. 



3D Part Segmentation

Where is the handle of 
the refrigerator?

Where is the button of 
the microwave?

Generalizable 3D 
Part Segmentation
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Existing Approaches

• Supervised by 3D ground truth labels.


• Suffer from 3D (labeled) data scarcity.

• E.g., PartNet only covers 24 object categories.


• Poor generalization to unseen categories.

Mo, Kaichun, et al. "Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object”. 




Leverage Pretrained Image-Language Models
GLIP

• Open-vocabulary 2D detection / grounding.


• Input: A free-form text description + a 2D image.


• Output: 2D bounding boxes.


• Excel at detecting object parts.



Pipeline



• How to convert 2D bboxes to 3D (semantic & instance) segmentation?


• How to finetune the GLIP model given few-shot 3D data?


• Can we leverage multi-view priors to boost GLIP’s performance?

Pipeline



Detected 2D BBoxes to 3D Point Segmentation 

• Challenges:

• Bounding boxes are not as precise as point-wise labels.


• Non-trivial to determine which sets of 2D bounding boxes indicate 
the same 3D part instance.


• A learning-free module:

1. 3D super point generation


2. 3D semantic voting 


3. 3D instance grouping



Detected 2D BBoxes to 3D Point Segmentation 

1. 3D super point generation

• Oversegment the input 3D point cloud into a collection of super points.


2. 3D semantic voting 

• Assign a semantic label for each super point.


3. 3D instance grouping

• Group super points within each part category into instances based on 

their similarity of bounding box coverage.



Zero-Shot Segmentation

• Enable zero-shot open-vocabulary 3D part segmentation.


• Limited by GLIP’s performances.



GLIP Failure Cases

• Pretrained GLIP fail to understand some of our part definitions.


• Can we finetune GLIP model with a few 3D shapes with ground truth 
segmentation?


•



Few-Shot Prompt Tuning
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Few-Shot Prompt Tuning



Multi-View Feature Aggregation
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Multi-View Feature Aggregation

• Better handle images taken from some rare viewpoints.



Method



PartNet-Ensembled

• 45 object categories, 103 parts.



Quantitative Results

• Impressive zero-shot 
performances.


• Not only outperforms 
existing few-shot 
approaches by a large 
margin, but also highly 
competitive compared to 
the fully supervised 
counterparts.



Real-World Point Clouds

• Input point clouds scanned by an iPhone.
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Takeaways

• A novel approach for low-shot 3D part segmentation.


• Achieves impressive zero-shot performances and highly competitive few-shot 
results compared to the fully supervised counterparts.


• Can be applied to real-world point clouds without significant domain gap.


